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Hyperbranched DNA clusters†
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Taking advantage of the base-pairing specificity and tunability of DNA interactions, we investigate the

spontaneous formation of hyperbranched clusters starting from purposely designed DNA tetravalent

nanostar monomers, encoding in their four sticky ends the desired binding rules. Specifically, we combine

molecular dynamics simulations and Dynamic Light Scattering experiments to follow the aggregation

process of DNA nanostars at different concentrations and temperatures. At odds with the Flory–

Stockmayer predictions, we find that, even when all possible bonds are formed, the system does not

reach percolation due to the presence of intracluster bonds. We present an extension of the Flory–

Stockmayer theory that properly describes the numerical and experimental results.

In recent years, the relationship between reversible self-assem-
bly of patchy colloidal particles and irreversible aggregation of
chemical units is receiving a renewed interest.1,2 This connec-
tion has been nourished by the observation that the clusters
considered in the Wertheim theory for associating liquids3,4

are the same loopless clusters considered in the Flory–
Stockmayer (FS) theory of polyfunctional condensation.5,6 For
example, the conditions for the formation of infinite networks,
valid for describing the self-condensation of f-functional Af
monomers (i.e. monomers with a number of f distinct reactive
groups), are equivalent to the ones for colloidal particles with f
attractive patches. In contrast to the chemical case, for which
equilibrium conditions are assumed – but hardly realizable in
experiments due to the covalent nature of the bonds – colloidal
aggregation may proceed to equilibrium, allowing for more
accurate control of the theoretical FS predictions.

For the case of colloidal particles with f patches, there is
evidence that the range of validity of the FS predictions
becomes wider and wider upon decreasing f.7,8 For binary
mixtures of very small average “valence” 〈f〉, the FS predic-
tions provide a quite accurate description of the cluster size
distribution, except for bond probabilities very close to the
percolation threshold (which is properly predicted theoreti-
cally).1 For this reason, patchy colloidal particles have
become a test ground for revisiting old FS predictions under
proper equilibrium conditions. Furthermore, they provided a
way to access the role of the bonding loops (i.e. close paths of
bonds), which are commonly neglected both in FS and
Wertheim theories.

An interesting aggregation phenomenon takes place in one-
component systems made of ABf−1 monomers‡ (i.e. where
each monomer is composed of one reactive group of type A
and f − 1 of type B), where A condenses with B, but reactions
between identical functional groups (AA and BB) are forbid-
den. The clusters resulting from this aggregation process are
commonly known as hyperbranched polymers, a term intro-
duced by Kim and Webster in their works on the synthesis of
highly branched polymers.9,10 In the last decades, the interest
towards the synthesis and understanding of these materials
has continuously grown, representing a challenge for innova-
tive applications. Hyperbranched polymers constitute an
appealing alternative to dendrimers, owing to their facile syn-
thesis and high tunability.11,12 Similar to other branched poly-
mers, they are characterized by high exposure of functional
groups, three-dimensional globular structure, low viscosity,
and good solubility.13,14 Potential applications include surface
coating,15 composite material filling to increase the thermal
and mechanical stability,16 drug and gene delivery,17–21 nano-
particle grafting for diagnostic imaging to reduce the
toxicity,22,23 and their use in sensors.24–26

From the theoretical standpoint, the aggregation of ABf−1

units is particularly interesting for several reasons: (i) it is ana-
lytically tractable (neglecting the formation of closed bond
loops); (ii) the cluster size distributions for branched polymers
are requested as an intermediate step in the evaluation of
several polyfunctional condensation processes; and (iii) it gives
rise, according to the FS theory, to an aggregation phenom-
enon in which the fully bonded case (when all A groups have
reacted) corresponds to the percolation transition. Therefore,
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‡The ABf−1 monomer can be also indicated as A−R−Bf−1 or ARBf−1.
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hyperbranched polymers do not have a gel phase but only a
sol one.

Despite the interest towards hyperbranched polymers, an
accurate comparison of the FS theoretical predictions with
numerical and experimental results has rarely been
attempted.27,28 Actually, the hypothesis of the absence of intra-
molecular reactions is expected to get progressively worse for
large degrees of polymerization. In fact, an unreacted A will
most likely interact with one of the (nearby) B sites belonging
to the same cluster, hence forming a closed loop. As a result,
the cluster size distribution of hyperbranched polymers may
not follow the FS predictions.

In line with the conceptual correspondence between patchy
colloids and reactive monomers, we present here a combined
numerical and experimental study of a colloidal analog of the
ABf−1 hyperbranching condensation. In particular, we design
specific DNA oligomers able to self-assemble into bulk quan-
tities of identical four-armed (i.e. f = 4) AB3 particles which can
interact in a controlled way.29–32 We exploit molecular dynamics
(MD) simulations based on the oxDNA2 coarse-grained inter-
action potential33,34 to follow the particle aggregation process
and to compare the numerical results with theoretical predic-
tions. This numerical study allows us to estimate the role of
intramolecular binding and how the presence of closed loops
modifies the cluster size distribution. We then demonstrate that
a cluster-based thermodynamic treatment, which also includes
intracluster bonds, can be developed to extend the FS theory in
order to accurately describe the simulation data and to provide
a significant guide to the experimental results. Finally, we
realize the same system in the laboratory and follow the aggrega-
tion process via Dynamic Light Scattering (DLS) to provide evi-
dence that the presence of intracluster bonds prevents the for-
mation of a percolating state, even in the limit of full bonding.

The DNA particle

In the last years, the ideas that have emerged with regard to
DNA nanotechnology35,36 have been borrowed by the soft matter
community to synthesize bulk quantities of nanometric par-
ticles with controlled shape and binding properties,29,30,32,37,38

including dendrimers.12 The particles we envision in this study
are assembled starting from four distinct single-stranded DNA
oligomers, each composed of 52 nucleotides, containing prop-
erly designed sequences of complementary groups (see Fig. 1a).
The self-assembly of these strands generates a well-defined
nanostar (NS), composed of four double-stranded arms of 20
base pairs (Fig. 1b and d). Two unpaired adenines, located at
the center of each of the four single-stranded sequences com-
posing the NS (resulting in a total of eight unpaired bases,
which form the NS core) provide arm flexibility. Each arm termi-
nates with a 9-base long single-stranded sticky sequence pre-
ceded by an additional unbonded adenine, which is inserted to
ease the linking between different NSs.

Most of the previous works on DNA NSs focused on the A4

case, tetra-armed NSs with identical self-complementary sticky

sequences, originating all identical AA bonds.29–31,39–47 The A4

system shows the analog of the gas–liquid phase separation at
low temperatures, driven by the association of the self-comp-
lementary sticky ends. For concentrations larger than the
“liquid” coexistence value, the system forms a reversible equili-
brium gel, which exhibits the static and dynamic features
expected for colloidal particles of valence four.29,30

With the specific design presented here, an individual NS
possesses one sticky end of type A and three of type B in order
to mimic a tetravalent AB3 monomer. The A and B sticky
regions have been adequately selected to allow only AB bonds
between different NSs (Fig. 1c and e).

The temperature response of the system is strictly related to
the number of nucleotides in the complementary sequences,
whose length allows to distinguish different hierarchical self-
assembly processes. As shown in Fig. S1 of the ESI,† above TNS
≈ 77 °C; the sample is composed of single and freely diffusing
DNA strands. Around TNS, the complementary sequences com-
prising the double-stranded arms start to self-assemble, giving
rise to a solution of unbonded NSs. On further cooling,
around Tb ≈ 42 °C, the sticky ends start to pair forming inter-,
and possibly intra-, NS AB bonds. At ambient temperature and
below, essentially all possible AB bonds are formed.

Materials and methods
Numerical methods

To simulate the aggregation kinetics of AB3 DNA NSs, we
employ the coarse-grained model oxDNA2, which is able to

Fig. 1 (a) Oligonucleotide composition of the four strands comprising
the tetravalent monomer. Colors correspond to sequence pairings
forming the double-stranded monomer arms, shown in (b). The last nine
bases are the A (red) and B (blue) sticky-end sequences, respectively. (c)
NS–NS binding via the 9-base long DNA sequences, located at the tips.
(d and e) Corresponding images generated from oxDNA configurations.
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reproduce the structural and thermodynamic properties of
single- and double-stranded DNA molecules.33,34 The inter-
actions between nucleotides account for the excluded volume,
backbone connectivity, Watson–Crick hydrogen bonding,
stacking, cross-stacking, coaxial-stacking, and for electrostatic
interactions at salt concentrations cNa

+ > 0.1 M. The model
parameters have been adjusted to reproduce the experimental
melting temperature data.33,48,49 A code implementing the
oxDNA2 model is freely available.50

Initial configurations are generated by randomly placing
copies of an already assembled DNA tetramer in the simu-
lation box, provided there is no overlap between the nucleo-
tides (for more details, see section B of the ESI†). The volume
is computed for the different values of N and concentrations (c
= 2 mg ml−1, 10 mg ml−1, and 20 mg ml−1, equal to those
experimentally investigated), using a tetramer molecular
weight of Mw = 63 893 g mol−1. We perform MD simulations in
the NVT ensemble with systems consisting of N = 300, 1000,
and 2000 DNA NSs of AB3 type. The largest system corresponds
to ∼4 × 105 interaction sites. The temperature in the simu-
lation, kept at T = 45 °C, is enforced using an Anderson-like
thermostat that emulates a Brownian motion.51 For the
selected temperature, we are able to follow the equilibration of
the system for up to 1010 MD time steps (corresponding to
∼30 μs of real time and six months of continuous computation
per run), taking advantage of the computational power of
modern Graphic Processing Units (GPU).

Experimental methods

DNA sequences are purchased from Integrated DNA
Technologies (IDT) with PAGE purification. Lyophilized
samples are initially dispersed in a filtered, DNAse-free,
50 mM NaCl solution. Tetravalent particles are pre-assembled
by mixing equimolar quantities of the single-stranded com-
ponents to a final NS concentration c = 22 mg ml−1 (344 μM).
The mixture is heated up to 90 °C, incubated for 20 minutes,
and slowly cooled down to room temperature overnight. NS
annealing is carried out using a Memmert oven.

We experimentally investigate three samples at different NS
concentrations: 2 mg ml−1, 10 mg ml−1, and 20 mg ml−1. The
samples are prepared in borosilicate glass capillaries (inner
diameter 2.4 mm, Hilgenberg GmbH). We dilute the NS batch
suspension with a NaCl solution at a proper molarity, in order
to obtain 30 μl of each sample at a final NaCl concentration of
250 mM. Finally, we cover the suspension with 20 μl of silicone
oil and seal the capillary using UV resin to avoid sample
evaporation.

DLS measurements are carried out at a fixed angle θ = 90°
with a custom-made setup consisting of a 633 nm He–Ne
Laser (17 mW, Newport Corp.) and a multi-tau digital correla-
tor (Brookhaven Inst.) connected to a multi-mode optical fiber.
The scattered light impinging on the fiber is spatially filtered,
resulting in a high coherence factor (β ≃ 0.8). Samples are
immersed in a water bath connected to a thermostat. The
actual temperature of the bath near the sample is measured
using a thermocouple probe with a ΔT = ±0.05 °C accuracy.

For each selected temperature, within the interval 10 °C ≤ T
≤ 50 °C every ΔT ≃ 5 °C, the sample is thermalized for
40 minutes before starting the acquisition. Each measurement
lasts 10 minutes. The autocorrelation functions of the scat-
tered intensity g2(t ) are calculated from the correlator output
and converted into the field correlation functions g1(t ) using
the Siegert relation.52

Results
Numerical results

We start by examining the number of bonds #b(t ) as a function
of time. We assume two NSs to be bound when at least five
complementary bases of the AB sticky sequences hybridize (see
section C of the ESI† for more details). Since the maximum
number of possible bonds (fully bonded state) is equal to the
number of particles N, the fraction of bonds #b(t )/N coincides
with the probability pb(t ) that an arbitrary A sticky end is
engaged in a bond with a B overhang at time t. At long times,
when equilibrium is reached, pb approaches the (concentration-
dependent) value fixed by the binding equilibrium constant.53

Similar to other studies, we consider a cluster as an object
formed by NSs joined together via AB bonds. Each cluster has
at the most one unreacted A site. This A site can bind to any of
the unreacted B sites belonging to the same cluster (hence
forming an intracluster bond, also indicated as a loop) or to
an unreacted B site of another cluster, thus merging the two
clusters. The FS mean-field theory5,54 provides a prediction for
the number of clusters Nc(n) of size n

NcðnÞ ¼ Nð1� pbÞFðn; pbÞ; ð1Þ
where

F n; pbð Þ ¼ f � 1ð Þn½ �!
n! f � 2ð Þnþ 1½ �!

pbn�1ðf � 1� pbÞ f�2ð Þnþ1

ðf � 1Þ f�1ð Þn ð2Þ

and the distribution is normalized such thatX
n

nNcðnÞ ¼ N: ð3Þ

The FS theory, which is formally equivalent to a constrained
maximization of the combinatorial entropy,55 is based on the
evaluation of the number of distinct cluster arrangements,
with the restriction that the N monomers are connected by
Npb bonds to form polydisperse loopless clusters. In eqn (1),
the term N(1 − pb) is equal to the total number of clusters and
it clearly reveals the mean-field approximation, being the
number of clusters equal to the number of particles minus the
number of bonds (Npb).

Fig. 2a and 3a show the cluster size distribution Nc(n)/N at
three different values of pb (three different times during the
simulation) for two different NS concentrations (c = 20 mg
ml−1 and c = 2 mg ml−1, respectively). The insets show the
corresponding time evolution of pb. As can be seen, the FS
theoretical predictions, with no fit parameter, become incap-
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able of representing the numerical data when pb ≳ 0.5. This is
very clear for the data at 20 mg ml−1, for which the FS predic-
tions underestimate the distribution of small clusters by more
than a factor of two. The disagreement between theoretical
predictions and numerical data at finite times could originate
from kinetic pathways and/or due to the presence of closed
loops, neglected in the FS approach. At long times, however,
when thermodynamic equilibrium is approached, disagree-
ment can only be ascribed to the presence of intracluster
bonds.

To double-check the role of intracluster bonds, facilitated
by the flexibility of the NS and by the growing density of B
sites upon increasing the cluster size, we calculate the number
of clusters with no reactive A sites, which is equal to the
number of intracluster bonds. We also separate the clusters
into two groups: the proper FS loopless clusters and the ones

with intracluster bonds. The latter violate the hypothesis of the
FS theory, which assumes that each cluster has one and only
one reactive A site. For the clusters with no loops (NL), we cal-
culate the total number of existing bonds #NLb and the total
number of particles composing these clusters NNL. The ratio
between these two numbers provides the bond probability pFSb
= #NLb /NNL for the subset of clusters satisfying the FS hypoth-
eses. The size distributions of the FS-compatible NL clusters
for different simulation times are shown in Fig. 2b and 3b and
compared with the FS predictions from eqn (1), identifying N
with NNL and pb with pFSb . The quality of the agreement con-
firms that for the NL clusters, where the FS hypotheses hold by
default, the mean-field predictions properly represent the
data, suggesting that the time evolution of the aggregation
process is sufficiently well-described by the equilibrium
solutions.56

Fig. 3 Similar to Fig. 2, the main graphs show the number distribution
of clusters (symbols, panel a) and the number distribution of clusters in
the FS subset (panel b) for different simulation times for the simulation
at c = 2 mg ml−1, N = 1000. The lines are the theoretical predictions
given by eqn (1) using pb (panel a) and pFS

b (panel b), respectively, whose
evolution over the simulation time is displayed in the insets. Symbols
and colors correspond to the time step relative to the curves in the main
graphs. Legend: Black squares, t ≃ 0.30 μs; red circles, t ≃ 0.91 μs; blue
triangles, t ≃ 3.03 μs.

Fig. 2 The main graphs show the number distribution of clusters
(symbols, panel a) and the number distribution of clusters in the FS
subset (panel b) of size n for different simulation times (i.e. different
bonding probabilities) for the simulation at c = 20 mg ml−1, N = 2000.
The lines are the theoretical predictions given by eqn (1) using pb (panel
a) and pFS

b (panel b), respectively, whose evolution over the simulation
time is displayed in the insets. Symbols and colors correspond to the
time step relative to the curves in the main graphs. Legend: Black
squares, t ≃ 0.06 μs; red circles, t ≃ 0.30 μs; blue triangles, t ≃ 1.52 μs.
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Additionally, we provide a quantification of the structural
properties of the clusters. We evaluate the mean squared
radius of gyration

Rg
2� �ðnÞ ¼ 1

2n2
Xn
j¼1

Xn
k¼1

ðrj � rkÞ2
* +

; ð4Þ

where rj is the position of the center of mass of the j-th NS
belonging to an aggregate of size n and the angular parenth-
eses indicate an ensemble average over all the clusters with the
same size n and over time. For fractal objects,

Rg
2� �ðnÞ � n

2
df ; ð5Þ

where df is the fractal exponent. A power law fit of the data pre-
sented in Fig. 4 shows that clusters larger than 3–4 monomers
grow with df ≈ 2.

Going back to the cluster size distribution, we next provide
an extension of the FS theory to account for intracluster
bonds. We recall that, formally, for weakly interacting clusters,
the probability of formation of a cluster of size n in equili-
brium is proportional55,57 to its partition function Qn multi-
plied by an (concentration-dependent) activity zn. As shown in
section D of the ESI,† the FS equation can indeed be recast in
this ideal gas of clusters thermodynamic formalism as

NNL
c ðnÞ ¼ QNL

n z n; ð6Þ
where the partition function of a loopless cluster

QNL
n ¼ V

Vref

f � 1ð Þn½ �!
n! f � 2ð Þnþ 1½ �! e�βFbond

� �n�1 ð7Þ

which is proportional to the system volume, measured in units
of a reference volume Vref, and is composed of a free-energy
dependent term, exp½�βFbondðVref ;TÞ�, modelling the contri-

bution of the formation of n − 1 bonds, and the FS combinator-
ial entropic term. β = 1/kBT as usual. z plays the role of an activity
and its value controls the concentration of the system. Being
Q1

NL = V/Vref, it is possible to identify z with the nondimensional
concentration of unbonded particles NNL

c (1)Vref/V. The mapping
between pb and Fbond is provided in section D of the ESI.†

To include the possibility of intracluster bonds, we sum the
partition functions associated with the configurations without
and with loops and we write the cluster size distribution of the
entire system as

NcðnÞ ¼ ðQNL
n þ QL

nÞzn: ð8Þ
The partition function QL

n, compared to QNL
n , must include

two terms: (i) an additional factor expð�βFbondÞ, which
accounts for the presence of the intracluster extra bond, and
(ii) a model-dependent factor g(n,β), which quantifies the free-
energy gain of forming an intracluster bond. The factor g(n,β)
includes the relative number of microscopic configurations
with an intracluster loop (with respect to a loopless cluster). It
may also include the free-energy cost of bringing the selected
B site close to the unbonded A site, and thus it could, in prin-
ciple, (weakly) depend on T if the monomer arms are not quite
flexible. The partition function QL

n can then be written as

QL
n ¼ g n; βð ÞQNL

n e�βFbond : ð9Þ
The unknown g(n,β) can be estimated by evaluating the

ratio between the number of clusters of size n with and
without loops from the simulated configurations at long
times, when equilibrium has been reached,

NL
c nð Þ

NNL
c nð Þ ¼

QL
n

QNL
n

¼ g n; βð Þ e�βFbond : ð10Þ

It is worth noting that the ratio NL
c (n)/N

NL
c (n) depends only

on the temperature but not on the concentration.
Fig. 5 compares the predictions of eqn (8) and (9) with the

numerical data from the simulations at c = 2 mg ml−1

(panel a) and c = 20 mg ml−1 (panel b) at long times, close to
(if not at) equilibrium. In the comparison, g(n,β) and
expð�βFbondÞ are the only fit parameters (β is fixed), identical
for all the densities. The values of z are fixed by the concen-
tration of loopless monomers. Despite the intrinsic noise of
the data, the theoretical predictions well represent the numeri-
cal values at all densities. The fit suggests that g(n,β) is essen-
tially constant already for n ≳ 2 (i.e. for clusters composed of
two monomers or more). This confirms that the unbonded A
site essentially binds with a B site on the same particle or, at
most, with one of its neighbor monomers. To provide
additional support for this statement, we investigate the distri-
bution of loop sizes,§ confirming that the average loop size is
quite small (≃1.7 ± 1).

Even at the coarse-grained level of the oxDNA model, simu-
lations are still too demanding to access lower temperatures

Fig. 4 Average squared radius of gyration as a function of the cluster
size n for different simulations. Power law fits for n ≤ 5 and n > 5 are
represented by the dashed and full lines, respectively. Legend: Triangles,
c = 20 mg ml−1 for N = 300 (green) and N = 2000 (blue, open and full);
red squares, c = 10 mg ml−1, N = 2000; circles, c = 2 mg ml−1 for N =
300 (dark green) and N = 2000 (black). In the top-left portion: a small
cluster (n = 3). In the bottom-right portion: a large cluster (n = 49).

§The loop size is defined as the number of monomers in a cluster that form a
closed cycle of bonds.

Nanoscale Paper

This journal is © The Royal Society of Chemistry 2020 Nanoscale, 2020, 12, 23003–23012 | 23007

Pu
bl

is
he

d 
on

 1
2 

N
ov

em
be

r 
20

20
. D

ow
nl

oa
de

d 
on

 1
/3

1/
20

22
 1

0:
17

:4
7 

PM
. 

View Article Online

https://doi.org/10.1039/d0nr04840b


than the one we have studied. However, the previous model
allows us to predict the expected cluster size distribution at
low T, when the driving force for bonding becomes quite
strong and all A sites have reacted. Under these conditions,
QNL is negligible compared to QL for all n. The cluster size dis-
tribution will coincide with the distribution of the clusters
with an intracluster bond and, therefore, will be given by

Nc nð Þ ¼ V
Vref

g n; βð Þ f � 1ð Þn½ �!
n! f � 2ð Þnþ 1½ �! e�βFbond

� �n
zn; ð11Þ

which can be recast in the form

Nc nð Þ ¼ V
Vref

g n; βð Þ f � 1ð Þn½ �!
n! f � 2ð Þnþ 1½ �!

VrefNc 1ð Þ
Vg 1; βð Þ

� �n

: ð12Þ

The term [VrefNc(1)/Vg(1,β)] acts as a renormalized activity.
Its value can be tuned to fix the average concentration. The
predicted low-T cluster size distributions for the three different

investigated densities are shown in Fig. 6. The insets of the
same figure show the associated mean cluster size (MCS) and
the relative radius of gyration of the mean cluster RðMCÞ

g as a
function of the NS concentration, respectively. From these
results, we can formulate three important considerations.
First, eqn (12) shows that the temperature (apart from the
weak dependence entering in g(n,β)) does not play any role:
once all possible bonds are formed, the equilibrium distri-
butions are the ones that maximize the entropy. Second, the
same equation shows that the NS concentration modulates the
cluster size distribution, at odds with the FS predictions,
which suggest the formation of an infinite percolating cluster
incorporating all monomers. Third, and more importantly, the
cluster size distribution remains finite at all physical values of
the NS concentrations. Hence, the chance to form intracluster
bonds eliminates the possibility to approach the percolation
transition. In a more physical way, eqn (12) tells us that, when
particles can satisfy all their bonds within the same cluster,
the fully bonded (low-T ) configuration is not the percolating
one. Rather, the equilibrium low-T state exploits the entropic
gain provided by the exploration of the system volume by a
multiplicity of clusters, modulated by a slightly modified – by
g(n, β) – FS combinatorial term.

Experimental results

The simulation study has revealed that the presence of
intracluster bonds strongly limits the formation of larger clus-
ters in the system, preventing the possibility to reach the per-
colation point even when all possible bonds are formed (pb = 1).
In this case, it has also shown that the cluster size distribution

Fig. 5 Comparison of the prediction of eqn (8) and (9) (lines) with the
simulation equilibrium data (symbols). Data are obtained by averaging
the cluster size distribution from two simulations at the same simulation
time. Panel a refers to the simulation at c = 2 mg ml−1 (t ≃ 6.9 μs). Panel
b refers to c = 20 mg ml−1 (t ≃ 2.85 μs). Legend: Circles, Nc(n)/N;
squares, NL

c(n)/N; triangles, NNL
c (n)/N.

Fig. 6 Main: Predicted number distribution of clusters Nc(n)/N in the
limit of the fully bonded system (eqn (12)). Top inset: Mean cluster size

MCS ¼ P
n
n2NcðnÞ=

P
n
nNcðnÞ

� �
as a function of the NS concentration.

The line is obtained by analytically computing the mean cluster size
from the low temperature cluster distribution of eqn (12). Bottom inset:

Radius of gyration of the mean cluster RðMCÞ
g as a function of the NS con-

centration. The line is obtained by combining the MCS dependence with
the fit of the radius of gyration shown in Fig. 4.
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is strongly concentration-dependent, with a MCS (inset of
Fig. 6) that is predicted to remain finite at all experimentally
accessible NS concentrations.

To test the numerical findings, we realize the very same
system in the laboratory and examine it via DLS. With experi-
ments, we are not limited to the investigation of one single
temperature. Instead, by changing T, we can probe different pb
values and even explore the T-window where all bonds are
formed (pb = 1 for T ≲ 20 °C), as shown by the melting profile
of the sticky sequences reported in section A of the ESI.† In
addition, experiments allow to probe the equilibrium pro-
perties of the system. Samples are left to equilibrate for several
minutes (∼40 min), a time sufficiently long to break and
reform several bonds between the A and B sticky ends. We
checked that all results are reproducible upon increasing and
decreasing T scans and are not affected by aging nor by the
previous history.

Fig. 7a–c show the autocorrelation functions of the scat-
tered field g1(t ) for the three investigated NS concentrations (c
= 2 mg ml−1, 10 mg ml−1, and 20 mg ml−1) and for the
explored Ts. For all samples and temperatures, the correlation
functions decay to zero within the experimentally accessible
time window (10 s), confirming the sample ergodicity. For all
studied concentrations, the system is far from a percolation
transition, consistent with the numerical simulations and the
proposed theoretical extension of the FS theory.

To quantify the slowing down of the dynamics and to
extract a typical (slow) relaxation time, the correlation curves

are fitted to a double stretched exponential function (see
section E of the ESI† for comparison to the fit function)

g1ðtÞ ¼ ð1� AsÞexpð�t=τfÞ þ As expð�t=τsÞβs ; ð13Þ

where τf and τs are the relaxation times of the fast and slow
relaxation processes, respectively, As is the amplitude of the
slow process, and βs its stretching exponent. The slow relax-
ation time is better represented by its average value, defined as

τsh i ¼
Ð1
0 t expð�t=τsÞβsdtÐ1
0 expð�t=τsÞβsdt

¼ τs
βs

Γ
1
βs

� �
; ð14Þ

where Γ is the gamma function.
The insets of Fig. 7a–c show the values of βs, which are

associated with the slow relaxation process. For all the
measurements, the values lie within the range 0.4 ≲ βs ≲ 0.6.
The values of the slow relaxation time are shown in Fig. 8 for
all the concentrations and temperatures. To eliminate the
trivial effect of the temperature dependence of the solvent vis-
cosity, the times are rescaled to the viscosity ηsolv of the
250 mM NaCl solvent at the highest investigated temperature
(Tref ≃ 48.5 °C) as

τ*sðTÞ ¼ τsh iðTÞ ηsolvðTrefÞ
ηsolvðTÞ

: ð15Þ

In general, two distinct processes – which can only be dis-
entangled in particular conditions – contribute to the relax-

Fig. 7 Upper panels (a–c): DLS results (g1(t )) showing the T-behavior of the system for the three different investigated NS concentrations: (a) 2 mg ml−1,
(b) 10 mg ml−1, and (c) 20 mg ml−1. Lower panels (d–f): Snapshots obtained from simulations performed at T = 45 °C at the same concentrations of
panels a–c. The boxes are displayed on the same scale (box side is L ≃ 220 nm). Different clusters are indicated with different colors.
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ation process probed by DLS: cluster restructuring and cluster
diffusion.

The cluster restructuring times, i.e. the times associated
with the cluster fracturing and/or the coalescence of different
aggregates, are related to the breaking of bonds. Hence, the
bond-breaking times control the cluster restructuring. In our
DNA design, explicitly selected to generate a fully bonded
system for T ≲ 20 °C, 9 base pairs take part to form the AB
bond, resulting in an enthalpic ΔH and entropic ΔS contri-
bution to the binding free-energy ΔG equal to ΔH = −61.5 kcal
mol−1 and ΔS = −178.3 cal mol−1 K−1, evaluated using the web
application DINAMelt58 based on SantaLucia.53 A reasonable
estimate of the bond lifetime is41

τ ¼ τ0eαΔG=RT ; ð16Þ
where τ0 is of the order of a few ms and R = 1.987 cal mol−1

K−1. The value of the coefficient α is between 0.5 and 2,
depending on the degree of cooperativity of the bond-breaking
process.59 Here, we use τ0 = 3 ms, as found in ref. 41. In Fig. 8,
we show the expected T-dependence of the bond lifetime as
predicted by eqn (16) for α = 0.5 and α = 1. In both cases, the
experimental times are faster than the bond-breaking time,
even when the most conservative estimate of the bond lifetime
is selected (α = 0.5). It is known, however, that the estimates of
hybridization/de-hybridization kinetic rates are approximate.
Therefore, one could wonder whether the slow characteristic
relaxation times, measured at high temperatures, might be
associated with the bond breaking between NSs. However, in
such case, the measured slow relaxation times should be very
similar for all the concentrations. In fact, the bond-breaking
time is mostly controlled by the hybridization of (identical)
sticky binding sequences (apart from a small logarithmic cor-

rection depending on c). This implies that the cluster diffusion
is the main mechanism for the decorrelation of the density
fluctuations in this system. Additionally, we observe a cross-
over between a high-T regime, where τ increases on lowering
the temperature, and a low-T regime, where τ is constant. The
crossover temperature is very close to the one where the theor-
etically predicted bond probability approaches unity (see
Fig. S1 of the ESI†). This suggests that the temperature interval
(T ≲ 20 °C) where the relaxation time is constant coincides
with the regime where all AB bonds are formed, while the
increase upon temperature reduction at high T is linked to the
progressive growth of the average cluster size.

At the lowest density (c = 2 mg ml−1, Fig. 7a), where the
hypothesis of independent clusters is more realistic, the relax-
ation process is quite fast and it does only show a weak hint of
two-step relaxation, suggesting that the experiments are
probing the free diffusion of limited-size clusters. In Fig. S3d
of the ESI,† we compare the experimental data at c = 2 mg
ml−1 with both the simple and double stretched exponential
(eqn (13)) fits. We also notice that, even at low c, the sample is
not monodisperse but composed of small aggregates (with a
polydispersity lower than the one for the larger concen-
trations). The relaxation time grows only by a factor of ≈5
when T varies from 50 °C to 10 °C (corresponding to pb from
≈0 to ≈1). At c = 10 mg ml−1 (Fig. 7b), a weak additional relax-
ation process appears, signalling the onset of interactions
between clusters. The respective image from the simulation
(Fig. 7e), which we can use as a visual aid to interpret the DLS
data, suggests that it may become appropriate to tentatively
interpret the fast decay as originating from the cluster-free
diffusion, while the slow one comes from the confinement
induced by the presence of nearby clusters. This hypothesis is
supported by the data at c = 20 mg ml−1 (Fig. 7c) – and again
by the simulation snapshot in Fig. 7f –, where the excluded-
volume interactions between clusters are significant, as illus-
trated by the pronounced two-step decay of the correlation
functions.

We then intend to compare the simulation results with the
experiments for the sample at c = 2 mg ml−1. We evaluate the
intensity-averaged¶ hydrodynamic radius from the cluster size
distribution obtained from the simulations at T = 45 °C (cf.
Fig. 5) and from the low-T theory (cf. Fig. 6). For each cluster of
size n, we calculate the hydrodynamic radius following the
recipe described in ref. 60, which provides the equivalent ellip-
soid associated with the cluster. The actual hydrodynamic
radius is then computed from the known formulae.61 Finally,
as done for the radius of gyration, we evaluate the cluster size
dependence of the ensemble average of Rh. The power law fit
to the data gives 〈Rh〉(n) ≃ R0n

γ, with

R0 ’ 5:0nm if n � 5
6:5nm if n > 5

�
ð17Þ

Fig. 8 T-Dependence of the (viscosity rescaled) slow decay time τ*s for
samples at the three different concentrations: 20 mg ml−1 (blue), 10 mg
ml−1 (orange), and 2 mg ml−1 (magenta). The lines are the two estimated
bond lifetimes, calculated according to eqn (16) using α = 0.5 (red) and α

= 1 (black), to provide support to the assumption that the relaxation
process takes place in a fixed bonding pattern.

¶The intensity average for the simulation data is obtained by performing the
average weighted by the distribution n2Nc(n).
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and

γ ¼ 0:68 if n � 5
0:53 if n > 5

�
: ð18Þ

For further details, see section F of the ESI.† At high temp-
erature, equal to the one numerically investigated (T = 45 °C),
we obtain from the simulations an intensity-averaged hydro-
dynamic radius of 〈Rh〉z ≃ 9.3 nm (using the radius of gyration,
one obtains 〈Rg〉z ≃ 8.1 nm). By analyzing the correlation time
associated with the fast relaxation τf, we estimate a mean
hydrodynamic radius Rh ≃ 5.5 nm. At low temperature, the
numerical prediction (see Fig. 6) provides an expected radius
〈Rh〉z ≃ 14.9 nm (〈Rg〉z ≃ 13.2 nm), to be compared to the
experimental value of Rh ≃ 22.5 nm.

The discrepancy between the experimental values and the
ones estimated from the simulations – which is about 50% at
low temperature and grows to a factor of ∼0.7 at T = 45 °C –

can be mainly ascribed to the approximate model we used for
the calculation of the hydrodynamic radius. Another possible
source of error can be related to the numerical noise of the
data used in the fit to obtain g(n,β).

Conclusions

This article, based on a combined numerical, theoretical, and
experimental study, reports numerous relevant findings.

• It shows that DNA-made NSs with precise binding topolo-
gies can be nowadays produced in bulk quantities and
exploited as highly precise model systems to tackle the physics
of aggregating particles, either directional colloids or func-
tional polymers. Here, we studied the aggregation behavior of
AB3 monomers made of DNA NSs with the aim of clarifying
the behavior of hyperbranched aggregation when intracluster
bonds are present.

• It reports an extensive MD simulations study, based on a
high-quality coarse-grained potential for the DNA interactions,
to investigate the equilibrium cluster size distribution at a
fixed temperature and at different initial monomer concen-
trations. We found that the mean cluster size increases with
the particle concentration, from a suspension of monomers
and small clusters, at low c, to a highly polydisperse solution
at large concentrations. Simulations also suggested that the
presence of intracluster bonds eliminates the possibility to
reach the percolation transition.

• It reports a novel theoretical way to include the presence
of intracluster bonds in the formalism. First, the FS approach
is translated in an ideal gas of clusters formalism, which is
then extended to include also the clusters with intracluster
bonds. Including a model-dependent (but concentration-inde-
pendent) quantity g(n,β) – which can be determined as a fit
parameter – it becomes possible to predict the cluster size dis-
tribution without limiting assumptions. The theory explains
why percolation is avoided when intracluster bonds are poss-
ible. Comparison with MD simulation data supports the
quality of the modelling.

• It reports DLS measurements of the same system studied
numerically and theoretically to provide evidence that, at odds
with the FS predictions, percolation is not encountered in this
system. Indeed, by decreasing the temperature, and exploiting
the reversibility of the sticky-end pairing, it is possible to inves-
tigate the effect of bonding, up to the point where all bonds in
the system are formed. The data we collected strongly support
the idea that the polydispersity of the aggregates remains
finite at low temperatures. Additionally, it shows that the low-T
equilibrium cluster size distribution only depends on the
initial monomer concentration.

We believe that these results will be also valuable for the
community interested in the biotechnological applications of
hyperbranched polymers, due to the biocompatibility and ver-
satility of DNA as a building block for complex and innovative
materials.
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S1

Supplementary Material to Hyperbranched DNA clusters
E. Lattuada, D. Caprara, V. Lamberti, and F. Sciortino

A. Nupack DNA analysis

To confirm the thermodynamic binding behavior of the designed sequences, we use the NUPACK oligo simulator [1].
Based on SantaLucia thermodynamics calculations, NUPACK provides the melting profile for arbitrary sequences of
oligomers at desired concentrations and salt conditions (more precisely, the T -dependence of the fraction of unbonded
base pairs).

Fig. S1, shows the T -behavior associated with the self-assembly of the tetravalent particles as well as of the isolated
sticky sequences (forming the AB bonds). Here, the strand concentrations are fixed at 313µM (corresponding to
the largest sample concentration c = 20 mg/ml) and the salt concentration at 250 mM of NaCl, respectively. As
can be noted, the gap in the melting temperatures between the particle assembly (see magenta points) with respect
to their sticky-end hybridization (blue) guarantees a net separation between the self-assembly of the nanostructures
(TNS ' 77◦C) and the formation of the interparticle bonds (Tb ' 42◦C).

Figure S1: Melting curves calculated using NUPACK oligo analyzer [1] for both the NS arms (magenta) and the
sticky tips (blue). Note that the self-assembly of the NS precedes on cooling the binding of the sticky sequences.

B. Preparation of simulation initial configuration

The simulation box is filled by placing the tetramers one after the other until the desired number N of tetramers
is reached. Each tetramer is placed with random orientation and at a random position within the box. Then, the
insertion energy is calculated: if the computed energy is larger than a predefined threshold (the thermal energy at
3×104 K), the tetramer is moved to a new position/orientation. The energy check is then repeated until the insertion
energy is less than the threshold. The resulting configuration is then equilibrated to 75◦C. This configuration – in
which all tetramers are not bonded – is then used as the starting configuration at the desired simulated temperature.

C. Bond definition in the numerical study

In the numerical study, we have defined a bond between an A and a B arm as a double-helix section of at least
five bases. This value is sufficiently large to exclude temporary association with just a few bases. To provide evidence
that results are robust respect to this threshold value, we show in Fig. S2 the cluster distribution obtained at long
times for the simulations at c = 2 mg/ml, N = 1000 (left) and c = 20 mg/ml, N = 2000 (right) when varying the
number of bases used in the bond definition.

Electronic Supplementary Material (ESI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2020
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Figure S2: Effect of the choice of the minimum number of bases (nbases) used to discriminate bonded and
non-bonded nanostars.

D. Considerations about the cluster free-energy and Flory-Stockmayer approach

Here, we relate the bond probability assumed in the Flory-Stokmayer (FS) theory [2, 3] to the partition function of
a bond. The FS theory assumes a value for the bond probability pb. In the hyperbranched ABf−1 case, pb = #b/N ,
being #b the number of bonds in the system and N the total number of possible bonds (equal to the number of
monomers). In a thermodynamic approach, pb is controlled by the interaction potential and by the state variables T
and V .

Let us consider a solution of N A-patches and N(f − 1) B-patches. We assume that an equilibrium is established
between bonded and non-bonded interactions, the latter quantified by a bonding volume Vb and a bonding energy
εAB . The mass-action law relates the number of reacted (NAB) and unreacted (NA and NB) A- and B-patches to
their partition functions as [4]

NAB
NANB

=
QAB
QAQB

. (1)

Neglecting intramolecular effects, to a first approximation, QA = QB = V/Λ3 (where Λ is the de Broglie wavelength
originating from the integration over momenta) and

QAB =
V Vb
Λ6

e−βεAB , (2)

so that

NAB
NANB

=
Vb
V

e−βεAB . (3)

Since NAB is equal to the number of AB bonds in the system (#b), we can write for the number of unreacted A-
and B-patches, respectively, NA = N − #b and NB = N(f − 1) − #b. Hence, the left hand side of Eq. (1) can be
rewritten as

NAB
NANB

=
#b

(N −#b)[N(f − 1)−#b]

=
pb

(1− pb)[(f − 1)− pb]
, (4)

from which it follows that

pb
(1− pb)[(f − 1)− pb]

=
NVb
V

e−βεAB . (5)
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This last relation provides the connection between the model parameters (Vb, εAB), V , and T and the bond probability
pb.

Starting from the thermodynamics expression for non-interacting clusters, one can write the number of clusters of
size n resulting from the association process of the A- and B-patches as

Nc(n) = Qnz
n, (6)

where z plays the role of the Lagrange multiplier controlling the total number of particles in the system, which can
also be expressed in terms of the number of unreacted particles (clusters of size 1, Nc(1)), since

z =
Nc(1)

Q1
=
Nc(1)Λ3

V
. (7)

The number of free monomers can be estimated using the FS relation

Nc(1) = N(1− pb)
(

1− pb
f − 1

)f−1
, (8)

which expresses the fact that all the monomers must have one A and (f − 1) B sites unbonded (we recall that the
probability that a B site is unbonded is #b/[N(f − 1)]). Then,

Nc(1)

V
= ρ(1− pb)

(
1− pb

f − 1

)f−1
(9)

and we can write, by defining ρ = N/V and ρ1 = Nc(1)/V , and equating Eq. (7) and Eq. (9),

ρ1
ρ

=
zΛ−3

ρ
= (1− pb)

(
1− pb

f − 1

)f−1
. (10)

Substituting this expression (to the power n) in the FS cluster size distribution (Eq. (1) of the manuscript, here
reproduced)

Nc(n) = N(1− pb)
[(f − 1)n]!

n![(f − 2)n+ 1]!

pn−1b (f − 1− pb)(f−2)n+1

(f − 1)(f−1)n
, (11)

one finds

Nc(n) = N(1− pb)D(n, f) pn−1b

(f − 1− pb)1−n

(1− pb)n

(
zΛ−3

ρ

)n
, (12)

where

D(n, f) =
[(f − 1)n]!

n![(f − 2)n+ 1]!
. (13)

Simplifying and making use of the relation in Eq. (5),

Nc(n)

V
=
N

V
D(n, f)

(
NVb
V

e−βεAB

)n−1(
zΛ−3

ρ

)n
= D(n, f)

(
Vbe
−βεAB

)n−1
(zΛ−3)n. (14)

Defining a reference volume Vref, one can define a reference bonding free-energy Fbond as [5]

e−βFbond(Vref,T ) =
Vb
Vref

e−βεAB , (15)

such that

Nc(n) =
V

Vref
D(n, f)

(
e−βFbond(Vref,T )

)n−1
(zVrefΛ

−3)n. (16)
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By comparing the definition of Fbond and Eq. (5), it follows that

pb
(1− pb)[(f − 1)− pb]

=
NVref
V

e−βFbond , (17)

which provides the link between the bond probability and the bonding free-energy.
Redefining z as (zVrefΛ

−3) and comparing Eq. (16) and Eq. (6), the partition function of a cluster of size n with
no loops (NL) can be identified as

QNL
n =

V

Vref
D(n, f)

(
e−βFbond(Vref,T )

)n−1
, (18)

which clearly shows the cluster center of mass contribution V , the combinatorial contribution D(n, f), and the
contribution arising from the n− 1 bonds.

Assuming that loops are also possible, one needs to add the contribution which includes the loops to the FS partition
function. The additional intracluster bond adds a term proportional to Vbe

−βεAB . Then, we propose to write the
partition function of clusters with loops (L) as

QL
n = QNL

n g(n, β) e−βFbond(Vref,T ), (19)

where the system-dependent factor g(n, β) accounts for the additional free-energy change. Specifically, it includes any
combinatorial and any elastic free-energy contributions not accounted by the Vbe

−βεAB term. Hence, the resulting
cluster size distribution is

Nc(n) = NNL(n) +NL(n) (20)

=
V

Vref
D(n, f)

(
e−βFbond(Vref,T )

)n−1 (
1 + g(n, β)e−βFbond(Vref,T )

)
zn,

where g(n, β) can be evaluated by calculating the ratio between the number of clusters of size n with and without
loops, NL(n)/NNL(n).

Note that, at low T , when all bonds are formed, g(n, β)e−βFbond(Vref,T ) � 1 and only the contribution from the
clusters with a loop to the partition function survives and

Qn =
V

Vref
D(n, f)

(
e−βFbond(Vref,T )

)n
g(n, β) (21)

and

Nc(n) =
V

Vref
D(n, f) g(n, β)

(
ze−βFbond(Vref,T )

)n
. (22)

This time

Nc(1) =
V

Vref
g(1, β)

(
ze−βFbond(Vref,T )

)
, (23)

so that

ze−βFbond(Vref,T ) =
ρ1

g(1, β)
, (24)

where ρ1 is the monomer’s (unbonded particles) density when the volume is measured in units of Vref, and

Nc(n) = D(n, f) g(n, β)

(
ρ1

g(1, β)

)n
, (25)

which, neglecting the weak dependence on T of g(1, β), does not depend on T any longer. The cluster size distribution
has reached its “ground state” limit.
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E. DLS data fitting

Fig. S3 compares the experimental data for the autocorrelation functions g1(t) with the fit performed using the
double stretched exponential function of Eq. (13) in the main document at high (a), intermediate (b), and low
temperatures (c). In panel d, we compare the fit using a simple exponential function with the experimental data and
the double stretched exponential fit.

100 101 102 103 104 105 106 107

t (µs)

0.0

0.2

0.4

0.6

0.8

1.0
g 1(t)

10.8°C
Fit double stretched exponential
Fit simple exponential

100 101 102 103 104 105 106 107

t (µs)

0.0

0.2

0.4

0.6

0.8

1.0

g 1(t)

10.9°C - 20 mg/ml
11.0°C - 10 mg/ml
10.8°C -  2  mg/ml

100 101 102 103 104 105 106 107

t (µs)

0.0

0.2

0.4

0.6

0.8

1.0

g 1(t)

31.5°C - 20 mg/ml
30.2°C - 10 mg/ml
29.8°C -  2  mg/ml

100 101 102 103 104 105 106 107

t (µs)

0.0

0.2

0.4

0.6

0.8

1.0

g 1(t)

44.1°C - 20 mg/ml
43.8°C - 10 mg/ml
43.7°C -  2  mg/ml

a) b)

c) d)

Figure S3: Panels a-c: Comparison of the experimental data (symbols) and the fit with Eq. (13) in the main
document (full lines) for the autocorrelation functions g1(t) obtained for the three different investigated NS
concentrations at high (a), intermediate (b), and low temperatures (c). Panel d: Comparison between the
experimental data with both the simple exponential and double stretched exponential fits for the sample at
c = 2 mg/ml, T = 10.8◦C (the experimental data and the double stretched exponential fit are the same as the ones
reported in panel c).

F. Hydrodynamic radius from simulations

In Fig. S4, we show the hydrodynamic radius calculated from the simulations for c = 2 mg/ml and c = 20 mg/ml
according to the method described in Ref. [6]. Briefly, for each cluster in the system, we computed the smallest
convex set of points (the convex hull) that encloses the position of the bases of the NSs forming the clusters. Then,
the gyration tensor is calculated using the center of mass of the triangles composing the convex hull. Finally, the
gyration tensor is diagonalized, obtaining the three eigenvalues λ1, λ2, and λ3, which are related to the three semi-axes
{a} of the ellipsoid as ai =

√
3λi. The hydrodynamic radius is evaluated according to

Rh =
2∫∞

0
[(a21 + θ)(a22 + θ)(a23 + θ)]

− 1
2 dθ

. (26)
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As done for the radius of gyration in the main text, we calculated the ensemble average of the hydrodynamic radius
over clusters of same size n and different simulation times.

100 101 102

n

101

102

〈R
h〉 (

nm
)

c = 20mg/ml
c = 2mg/ml

~n0.53

~n0.68

Figure S4: Hydrodynamic radii calculated from the simulations for c = 2 mg/ml (black points) and c = 20 mg/ml
(red squares), respectively. Blue solid line and magenta dashed line are the power law fits to the data for n ≤ 5 and
n > 5, respectively.

[1] J. Zadeh, C. Steenberg, J. Bois, B. Wolfe, M. Pierce, A. Khan, R. Dirks and N. Pierce, J. Comput. Chem., 2011, 32,
170–173.

[2] P. Flory, J. Am. Chem. Soc., 1941, 63, 3083.
[3] M. Rubinstein and R. Colby, Polymer Physics, OUP Oxford, 2003.
[4] T. Hill, Statistical Mechanics: Principles and Selected Applications, Dover Publications, 1987.
[5] F. Sciortino, E. Bianchi, J. Douglas and P. Tartaglia, J. Chem. Phys., 2007, 126, 194903.
[6] L. Rovigatti, N. Gnan, A. Ninarello and E. Zaccarelli, Macromolecules, 2019, 52, 4895.


	Button 1: 


